Processing math: 100%

Wednesday, May 10, 2017

Mathematical Reflections 2017, Issue 1 - Problem J398

Problem:
Let a,b,c be real numbers. Prove that (a^2+b^2+c^2-2)(a+b+c)^2+(1+ab+bc+ca)^2 \geq 0.

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

Solution:
Let x=a+b+c and y=ab+bc+ca. Then, a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=x^2-2y. So,
\begin{array}{lll} (a^2+b^2+c^2-2)(a+b+c)^2+(1+ab+bc+ca)^2&=&(x^2-2y-2)x^2+(1+y)^2\\&=&x^4-2x^2(y+1)+(y+1)^2\\&=&(x^2-y-1)^2 \\ & \geq & 0. \end{array}
Equality holds if and only if x^2=y+1, i.e. if and only if (a+b+c)^2=ab+bc+ca+1, i.e. if and only if a^2+b^2+c^2=1-ab-bc-ca.

No comments:

Post a Comment