Loading [MathJax]/extensions/TeX/newcommand.js

Wednesday, May 10, 2017

Mathematical Reflections 2017, Issue 1 - Problem U401

Problem:
Let P be a polynomial of degree n such that P(k)=\dfrac{1}{k^2} for all k=1,2,\ldots,n+1. Determine P(n+2).

Proposed by Dorin Andrica, Babe\c{s}-Bolyai University, Cluj-Napoca, Romania


Solution:
There exists a unique interpolating polynomial P of degree n such that P(k)=\dfrac{1}{k^2} for all k=1,2,\ldots,n+1 and this is
P(x)=\sum_{k=1}^{n+1} \left(\prod_{\stackrel{1\leq j\leq n+1}{j\neq k}}\frac{x-j}{k-j}\right)\dfrac{1}{k^2}.
Observe that \renewcommand{\arraystretch}{2} \begin{array}{lll} \displaystyle \prod_{\stackrel{1\leq j\leq n+1}{j\neq k}}\frac{n+2-j}{k-j}&=&\displaystyle\prod_{j=1}^{k-1} \left(\dfrac{n+2-j}{k-j}\right)\prod_{j=k+1}^{n+1} \left(\dfrac{n+2-j}{k-j}\right)\\&=& \displaystyle \dfrac{(n+1)!}{(n-k+2)!(k-1)!}\cdot\dfrac{(n-k+1)!}{(-1)^{n-k+1}(n-k+1)!}\\&=& \displaystyle (-1)^{n-k+1}{n+1 \choose k-1}. \end{array}
So, P(n+2)=\sum_{k=1}^{n+1} (-1)^{n-k+1}{n+1 \choose k-1}\dfrac{1}{k^2}.

No comments:

Post a Comment