Let n be a positive integer and let P(x) be a polynomial of degree at most n such that |P(x)| \leq x+1 for all x \in [0,n]. Prove that
|P(n+1)|+|P(-1)| \leq (n+2)(2^{n+1}-1)
Proposed by Alessandro Ventullo, Milan, Italy
Solution:
In order to prove the inequality, we deduce upper bounds for |P(-1)| and |P(n+1)|.
Let a_0,a_1,\ldots,a_n be n+1 distinct real numbers. Let L_i(x)=\prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{x-a_j}{a_i-a_j} be the n-th degree Lagrange base polynomials for i=0,1,\ldots,n. We first prove that \{L_0(x),\ldots,L_n(x)\} is a basis for \mathbb{R}_n[x]. Since \dim \mathbb{R}_n[x]=n+1, we only have to prove that \{L_0(x),\ldots,L_n(x)\} are linearly independent. Let (\lambda_0,\ldots,\lambda_{n+1}) \in \mathbb{R}^{n+1} such that \lambda_0L_0(x)+\ldots+\lambda_n L_n(x)=0 For each i \in \{0,1,\ldots,n\}, if x=a_i we have 0=\sum_{j=0}^n \lambda_j L_j(a_i)=\sum_{j=0}^n \lambda_j \delta_{ji}=\lambda_i, so \lambda_i=0 for any i \in \{0,1,\ldots,n\} and this shows that \{L_0(x),\ldots,L_n(x)\} is a basis for \mathbb{R}_n[x]. So, if P \in \mathbb{R}_n[x], there exists (\lambda_0,\ldots,\lambda_n) \in \mathbb{R}^{n+1} such that P(x)=\sum_{j=0}^n \lambda_jL_j(x). If x=a_i, then P(a_i)=\sum_{j=0}^n \lambda_j L_j(a_i)=\sum_{j=0}^n \lambda_j \delta_{ji}=\lambda_i, so we can write P(x)=\sum_{j=0}^n P(a_j)L_j(x). If (a_0,a_1,\ldots,a_n)=(0,1,\ldots,n), we have P(x)=\sum_{j=0}^n P(j)L(x)
Now, we have \renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |L_i(-1)|=\left| \prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{-1-j}{i-j} \right|&=& \displaystyle \prod_{j=0}^{i-1} \dfrac{j+1}{i-j} \prod_{j=i+1}^n \dfrac{j+1}{j-i}\\&=& \displaystyle \dfrac{i!}{i!}\cdot \dfrac{(n+1)!}{(i+1)!(n-i)!}\\&=& \displaystyle {n+1 \choose i+1} \end{array}
and
\renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |L_i(n+1)|=\left| \prod_{\begin{smallmatrix} j=0\\ j\neq i\end{smallmatrix}}^{n} \dfrac{n+1-j}{i-j} \right|&=& \displaystyle \prod_{j=0}^{i-1} \dfrac{n+1-j}{i-j} \prod_{j=i+1}^n \dfrac{n+1-j}{j-i}\\&=& \displaystyle \dfrac{(n+1)!}{i!(n+1-i)!}\cdot \dfrac{(n-i)!}{(n-i)!}\\&=& \displaystyle {n+1 \choose i}. \end{array}
Hence, \renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |P(-1)|=\left| \sum_{i=0}^n P(i)L_i(-1) \right| & \leq & \displaystyle \sum_{i=0}^n |P(i)L_i(-1)| \\ & \leq & \displaystyle \sum_{i=0}^n (i+1) {n+1 \choose i+1}\\&=& \displaystyle (n+1) \sum_{i=0}^n {n \choose i}\\&=&(n+1)2^n \end{array} and
\renewcommand{\arraystretch}{2} \begin{array}{lcl} \displaystyle |P(n+1)|=\left| \sum_{i=0}^n P(i)L_i(n+1) \right| & \leq & \displaystyle \sum_{i=0}^n |P(i)L_i(n+1)| \\ & \leq & \displaystyle \sum_{i=0}^n (i+1) {n+1 \choose i} \\ &=& \displaystyle \sum_{i=0}^n i{n+1 \choose i}+\sum_{i=0}^n {n+1 \choose i} \\ &=& \displaystyle (n+1) \sum_{i=1}^n {n \choose i-1}+ \sum_{i=0}^n {n+1 \choose i} \\&=&(n+1)(2^n-1)+(2^{n+1}-1). \end{array}
Adding the last two inequalities, we get the desired inequality.
No comments:
Post a Comment